Spis treści

1 Preface 1

2 Introduction 3

3 Traditional solutions using wire mesh and wire rope nets 7
 3.1 Wire mesh as a flexible measure to protect surfaces 7
 3.2 Wire rope nets as a flexible measure to protect surfaces 8
 3.3 Active and passive systems 9
 3.4 Hard, flexible and soft facing 10

4 Traditional dimensioning methods 13
 4.1 Sliding off parallel to the slope 14
 4.2 Local wedge-shaped bodies liable to break out 15
 4.3 Required input quantities 17
 4.4 Proof of the terrain’s resistance against sliding (deep sliding surfaces) 18

5 High tensile steel wire meshes 19
 5.1 High-tensile wire mesh as a slope stabilization system 21
 5.2 Nail arrangement 22
 5.3 Pretensioning of the nails 23
 5.4 High tensile steel wire meshes 24
 5.5 Material properties of high-tensile wire mesh 25
 5.5.1 Tensile tests and results on single wire 26
 5.5.2 Machinery for the mesh tests in longitudinal and transverse directions 28
 5.5.3 Test setup and results of tensile test in the longitudinal direction 31
 5.5.4 Test setup and results of tensile tests in the transverse direction 32
 5.6 Corrosion protection 34
 5.6.1 Accelerated weathering tests 35
 5.6.2 Long-term field tests for comparison between Zn coated and Zn-Al coated wires 36
 5.6.3 Long-term field study of Al-Zn coated wires in alkaline environment 38
 5.7 Connection of mesh panels 41
 5.7.1 Importance of connection elements 41
 5.7.2 Connection clip 41
 5.7.3 Setup and results of connection element tests 42
5.8 System spike plate 45
5.9 Comparison with standard steel wire meshes 47
5.9.1 Comparison test with heavy chainlink mesh made from traditional steel wire 47
5.9.2 Comparison test with reinforced hexagonal mesh made from traditional steel wire 52

6 Tangential force transmission, mesh to nail 57
6.1 Test setup for tangential force transmission, mesh to nail 57
6.2 Test results of tangential force transmission, mesh to nail 59

7 Force transmission nail to mesh in nail direction 61
7.1 Test setup for force transmission nail to mesh in nail direction 62
7.2 Test results of force transmission nail to mesh in nail direction 62

8 New designing method for flexible slope stabilization systems 67
8.1 Investigation of superficial instabilities parallel to the slope 69
8.2 Stability proofs in the investigation of superficial failures parallel to the slope 70
8.2.1 Proof of the nail against sliding-off a superficial layer parallel to the slope 70
8.2.2 Proof of the mesh against puncturing 71
8.2.3 Proof of the nail to combined strain 72
8.3 Investigation of local instabilities between the individual nails 73
8.3.1 Failure mechanism A 76
8.3.2 Failure mechanism B 77
8.4 Proofs of bearing safety in the investigation of local failure mechanisms 78
8.4.1 Shearing-off of the mesh at the upslope edge of the spike plate at lower nail 78
8.4.2 Selective transmitting of the slope-parallel force Z from the mesh to upper nail 79
8.5 Parameters to be determined empirically 80
8.6 Load case "earthquake" 81
8.6.1 Investigation of instabilities close to the surface and parallel to the slope 81
8.6.2 Investigation of local instability between the nails 82
8.7 Load case "streaming parallel to the slope" 84
8.7.1 Investigation of instabilities close to the surface and parallel to the slope 85
8.7.2 Investigation of local instability between the nails 86
8.8 Investigation of the global slope stability 88
8.9 Greening and revegetation 92
8.10 External examination and inspection of the new designing method 94
8.11 General remarks about natural hazard protection 95
10.7.4 Horizontal mesh connection 135
10.7.5 Positioning of the spike plates 135
10.7.6 Positioning of the spike plates in areas of hollows in the terrain 136
10.7.7 Pretensioning of the slope stabilization system 136
10.7.8 Fixation of the mesh edges 137
10.7.9 Fixation in combination with concrete foundation beam 139
10.8 Water and drainages 140
10.9 Erosion control 141
10.10 Greening, revegetation and planting 142
10.10.1 General assessment of the need of greening (technical view) 142
10.10.2 Vegetation face 143
10.10.3 Revegetation with erosion control mat 143
10.10.4 Seeding methods 144
10.10.5 Planting 145
10.10.6 Maintenance 147
10.11 Dells, hollows and recesses 148
10.12. Acceptance of the construction 150
10.12.1 Acceptance inspection 150
10.12.2 Acceptance protocol 151
10.13 Maintenance and periodic inspection of the flexible slope stabilization system 151
10.13.1 Maintenance of the system 151
10.13.2 Periodic inspection of the system 152
10.14 Carbon footprint and environmental aspects 152
10.14.1 What is a carbon footprint? 153
10.14.2 Why calculate a carbon footprint 153
10.14.3 CO₂ footprint comparison between slope stabilizations with shotcrete and with high tensile steel wire mesh 154
10.14.4 CO₂ footprint comparison between slope stabilizations with concrete and with high tensile steel wire mesh 158

11 Practical examples 161
11.1 Project built at Anzenwil, Switzerland 161
11.2 Project built at Mülheim, Germany 164
11.3 Project built at Odernheim, Germany 167
11.4 Project built on Island of Helgoland, Germany 172
11.5 Project Kaiserslautern, Germany 175
11.6 Project built at Grodzic Śląski, Poland 183
11.7 Project Laliki, Poland 186
11.8 Selection and samples of further TECCO projects 190

12 Outlook and recommendation for further research 207

13 Summary and conclusions 209
Appendices

Appendix A General overview drawing of TECCO system 212
Appendix B Data sheet of high tensile steel wire mesh 213
Appendix C Principle drawing of TECCO spike plate 214
Appendix D Principle drawing of T3 connection clip 215
Appendix E Example for high tensile steel wire test series 216
Appendix F Model tests regarding bearing resistances 217
Appendix G Material description and calculation of carbon footprint analysis and comparison 219
Appendix H Example for output data of RUVOLUM Dimensioning Software 224

List of References 229

Minutes 237

oprac. BPK