KEYNOTE PAPERS

Destrebecq J.-F., Balandraud X.
New results on the use of shape memory alloys for stress achievements in concrete components 15

Fardis M.N.
Performance- and displacement-based seismic design of concrete structures 33

Helland S.
Limit state and reliability based service life design of concrete structures according to ISO 16204 61

Menegotto M.
fib and the Development of Structural Codes in Europe 79

Neale K. W., Abdel Baky H., Godat A., Elsayed W., Ebead U.
Recent advances in the numerical modelling of FRP strengthened reinforced concrete beams and slabs 93

Nowak A. S., Rakoczy A. M.
Reliability model for shear strength of lightweight concrete beams 103

Pietruszczak S.
Numerical analysis of large-scale masonry and reinforced concrete structures 123

Polak M. A.
Design, construction and research on reinforced concrete flat slabs 141

Sakai K.
Towards sustainability of concrete industry 159

Walraven J., Bigaj A.
The 2010 fib Model Code for concrete structures: a new approach
1. ADVANCES IN REINFORCED AND PRESTRESSED CONCRETE STRUCTURES

Dębska A., Balandraud X., Gwoździewicz P., Destrebecq J.-F., Seruga A.
An experimental study of the use of shape memory alloy for the prestressing of small scale concrete beams

Gromysz K.
Dissipative forces in joint surface of composite steel reinforced concrete floors

Habiera E., Czkwianianc A.
Redistribution offerees between reinforcement bars and profiles in the intermediate support zone in the double span beams with steel profile and topping concrete

Jamo Ł., Gwoździewicz P., Destrebecq J.-F.
Concrete members prestressed with shape memory alloys. Theoretical approach

Kołodziejczyk E., Kamińska M.
High-yield-strength steel as the reinforcement of RC elements

Tran H., El Hajjar M., Balandraud X., Destrebecq J.-F.
Analysis of stress creation in small scale concrete beams by means of shape memory alloy wires

2. ANALYTICAL AND NUMERICAL MODELS FOR CONCRETE STRUCTURES

Abdel Baky H., Kotynia R., Neale K. W.
A proposed continuum mechanics-based bond-slip model for near surface mounted FRP/concrete interfaces

Balázs G. L., Vijayanand M., Muthu, K. U.
A simple effective moment of inertia function for steel fibre reinforced SCC beams

Bątkowska B., Flaga K.
Numerical analysis of thermal fields stresses during bridge concrete frost resistance tests

Bompa D. V., Onet T.
Punching of flat slabs without shear reinforcement based on analytical studies 217

Gawin D., Wyrzykowski M., Grymin W., Pesavento F.
Modelling degradation of concrete structures due to alkali-silica reaction in variable hygro-thermal conditions 219

Hulimka J., Krzywon R., Knoppik-Wróbel A.
Use of the foamed concrete in the structure of passive house foundation slab 221

Klemczak B., Knoppik-Wróbel A.
Numerical analysis of early-age thermal and moisture effects in RC wall 223

Lewiński P. M., Więch P. P.
Analytical model and experimental research of punching shear in RC slabs 225

Noakowski P.
Close to reality structural design of towers. The basics of the relevant standards for industrial chimneys 227

Tuken A., Siddiqui N.
A simplified analytical procedure to determine the amount of shear walls in reinforced concrete buildings 229

3. ANALYTICAL AND NUMERICAL MODELS FOR MASONRY STRUCTURES

Jasiński R.
Numerical model of the horizontally sheared wall 233

Matyszko L., Jemioło S., Bilko P.
On the use of the Hoffman criterion in the continuum structural model for masonry panels 235

Sanada Y., Madiawati, Swezinwin, Konishi D.
Test and analysis of a masonry infill wall used in Indonesia 237

Shrastha K. C., Nagae T., Araki Y.
Finite element study on pinning retrofitting technique of masonry walls with opening subjected to in-plane shear load 239

4. APPLICATION OF FRP MATERIALS - THEORY, PRACTICE AND NEW CODES
Bencardino F., Spadea G.
Strain debonding and design in retrofitting RC structures according to different guidelines 243

Derkowski W., Kwiecień A., Zając B.
CFRP strengthening of bent RC elements using stiff and flexible adhesives 245

Hegger J., Sherif A., Will N., Ibrahim W.
Stress redistribution in steel reinforced members strengthened with CFRP strips 247

Jankowiak I.
Experimental and FEM analysis of RC beams strengthened by CFRP strips 249

Kwiecień A.
Pull-off tests of stiff and flexible adhesives bonding CFRP laminates to masonry substrates 251

Pahn M., Hanz F.
Three-layered sandwich panels with GFRP-connectors 253

Rafi, M. M., Nadjai A.
Thermal behaviours of FRP and hybrid RC beams in fire - experimental study 255

Rafi, M. M., Nadjai A.
Thermal behaviours of FRP and hybrid RC beams in fire - numerical study 257

Trombeva-Gavriloska A., Šelih J., Cvetkovska M., Samardzioska T.
Analysis of modelled discontinuous bond in RC beam strengthened by CFRP plate under equal load 259

5. BEHAVIOUR AND APPLICATION OF HPC IN STRUCTURES

Kohoutkova A., Broukalova I., Kratky J., Vodicka J., Cech J.
Analysis of prestressed fibre concrete structural member in numerical simulation 263

Słoński M.
Bayesian neural network for prediction of strength for high performance concrete 265

6. DURABILITY ASSESSMENT AND ENVIRONMENTAL EFFECTS ON CONCRETE AND MASONRY STRUCTURES
7. EFFECTS OF CYCLIC AND LONG-TERM LOADING ON CONCRETE AND MASONRY STRUCTURES

Churilov S., Dumova-Jovanoska E.
Experimental evaluation of in-plane shear behaviour of unreinforced and strengthened brick masonry walls 285

Dhanasekar M., Haider W., Thangarajah J.
Response of partially grouted wider reinforced masonry walls to in plane cyclic shear 287

Pająk M.
Dynamic response of SFRC under different strain rates - an overview of test results 289

Zanuy C., Albajar L., Gallego J. M.
Toward modelling the shear fatigue behaviour of reinforced concrete beams without shear reinforcement 291

8. MASONRY IN COMPLEX STRESS STATE
Capozucca R.
Historic masonry shear walls under in-plane loading 295

Kubica J., Kałuża M.
Comparative tests of diagonally compressed unreinforced and bed joint reinforced masonry made of ACC block 297

Szojda L.
Analysis of the effectiveness of strengthening masonry structures subjected to the influence of ground deformation 299

9. MODELS AND NUMERICAL SIMULATIONS FOR CONCRETE AT MACRO/MESO/MICRO-SCALES

Bobiński J., Tejchman J.
Simulations of cracks in concrete elements using XFEM 303

Korol E., Tejchman J.
FE calculations of deterministic and stochastic size effect in unnotched concrete beams 305

Negele A., Polak M. A., Eligehausen R.
Finite-element simulations on the influence of the reinforcement ratio on the punching shear failure 307

Podgórski J.
Analysis of the crack propagation in concrete and other geo-materials 309

Rypi R., Vořechovský M., Sadišek V., Hegger J.
Probabilistic modeling of short fiber reinforced composites: asymptotic evaluation of a crack bridge performance 311

Skarżyński Ł., Tejchman J.
The effect of aggregate characteristics on the behaviour of fine-grained concrete 313

Sondej M., Górski J., Korzeniowski P.
Stochastic nonlinear analysis of concrete-filled steel tubes (CFST) with confinement effect 315

Wosatko A., Pamin J., Winnicki A.
Viscoplastic consistency and gradient damage models in simulations of cracking in concrete under dynamic loading 317
10. MODELS FOR ANALYSIS OF CONCRETE AND MASONRY STRUCTURES ACCORDING TO NEW CODES

Ahmed M. H., Hassanean Y. A., Abd El Shafy Z. E., Farouk M. A.
Mathematical model for linear analysis of one way ribbed slabs 321

Chudyba K., Matysek P.
Methods for determining masonry walls fire resistance 323

Kowalski R., Urbański M.
Redistribution of bending moments in multi-span R/C beams and slabs subjected to fire 325

Lechman M.
Section model for analysis of thermal stresses in concrete members 327

Tour V., Drahan A.
Cracking width design of reinforced concrete members 329

11. PERFORMANCE BASED DESIGN OF CONCRETE AND MASONRY STRUCTURES

Ghiassi B., Soltani M., Tasnimi A. A.
Seismic evaluation of retrofitted masonry structures with reinforced concrete layer 333

Leite J., Paulo Pereira M., Lourenço P. B.
Infill masonry: seismic behaviour of reinforced solutions 335

Paulo Pereira M. F., Neto Pereira M. F., Dias Ferreira J. E., Lourenço P. B.
Behavior of damaged masonry infill panels in RC frames subjected to out of plane loads 337

Valente M.
Displacement based design procedure for seismic retrofitting of RC frames using buckling restrained braces 339

Valente M.
Performance based design procedure for RC frames with supplemental fluid viscous dampers 341

12. STRUCTURAL CONCRETE IN COMPLEX STRESS STATE

Lewiński P. M., Zygowska M.
Two elasto-plastic work-hardening constitutive models for multiaxial
behavior of concrete

Ścigallo J., Garstecki A.
Effective combinations of actions on structures in ultimate limit states

Urbański A.
FE analysis of a reinforced concrete beam cross-section under shear, torsion, bending and axial force

oprac. BPK