Preface

Post-Parametric Automation in Design and Construction 13
(Alfredo Andia and Thomas Spiegelhalter)
Automating Design 13
Automating Construction 14
Toward a Semiautomated Construction Sector 14

Part I—Automating What? 17

Chapter 1
Toward Automating Design and Construction 19
(Alfredo Andia and Thomas Spiegelhalter)
Introduction 19
What Are Computers and How Do We Use Them? 19
Automation 20
Automating Design vs. Automating Construction 20
The Automation Themes in Architecture and Engineering: 21 From CAD to Parametric Brief History of Parametric in Architecture 21
Three Parametric Paradigms 22
Post-Parametric Era 23
Automating Architecture and Engineering via Machine Learning 23
Automation Themes in Construction 23
Automating Construction via the Future of Digital Manufacturing 24
Conclusion 25

Chapter 2
Green Automation: Design Optimization, Manufacturing, and Life-Cycle Sustainability 27
(Alfredo Andia and Thomas Spiegelhalter)
Introduction 27
Toward Interoperable, Automated, Parametric/Algorithmic Carbon-Neutral Design Workflows 28
Total Green Building Automation System with Human-Computer-Interface Topologies 30
Automation in Green Building Manufacturing 31
Conclusion 32

Part II—Post-Parametric Workflows in Architectural and Engineering Offices 35
(Alfredo Andia and Thomas Spiegelhalter)
Chapter 3
Engaging with Complexity: Computational Algorithms in Architecture and Urban Design (Keith Besserud, SOM)
Introduction 39
Search Algorithms 40
Genetic Algorithms 41
Systems Modeling 42
LakeSIM Integrated Infrastructure Modeling Platform 44
Conclusion 45

Chapter 4
Space Planning with Synthetic User Experience (Christian Derix, AEDAS)
Introduction 47
Space as Heuristic Organization 48
Models of Designer as User 49
Models of Occupant as User 50
Relational Representation 50
Enactive Architectures 51
Generic Functions of Buildings 53
Designing Organically 55
Computational Archetypes of Space 56

Chapter 5
Introduction 59
Key Design Elements 60
Adaptive Mashrabiya Solar Screen 61
Managing Complexity 62
The Algorithm 65
Setting Up First Set of Algorithmic Principles and 4-D Java Scripting 66
4-D Parametric/BIM Model and Geometry Optimization 70
Adaptive Principles Optimization, Construction, and Performance Manual 72
Updating the Adaptive Algorithmic Principles and HMI Control Software 74

Chapter 6
Custom-Designed Structures and Façades with Parametric-Algorithmic BIM Systems: 1 Bligh Street, Green Star Rated High Rise Project, Sydney (Thomas Spiegelhalter)
Introduction 75
Site Condition, Building Key Features, and Systems 76
Double Façade, Space Conditioning, Cooling, and Energy Use Concept 79
Challenges of the Multidisciplinary CAD To BIM Collaboration 79
Structural Analysis and Design Integration 83
Integrated Double Façade Performance Analysis, Mechanical Electrical,
Chapter 11

Customized Algorithmic Engineering of a Curved Cable - Stayed Façade: The Enzo Ferrari Museum, Modena, Italy

(Lucio Blandini and Werner Sobek)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>131</td>
</tr>
<tr>
<td>Geometry</td>
<td>133</td>
</tr>
<tr>
<td>Cable-Stayed Glass Façade</td>
<td>134</td>
</tr>
<tr>
<td>Aluminum Roof</td>
<td>138</td>
</tr>
<tr>
<td>Conclusion</td>
<td>139</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>139</td>
</tr>
</tbody>
</table>

Chapter 12

Siemens Digital (Self-Learning) Factories and Automation: Automated System Optimization via Genetic Algorithms

(Thomas Spiegelhalter)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional 2-D Factory Design Processes Are Prone to Error</td>
<td>145</td>
</tr>
<tr>
<td>Digital Factory Design and Operation with PLM Software</td>
<td>146</td>
</tr>
<tr>
<td>Case Study: Integrated Tecnomatix and Robotics Process Engineering for the Volkswagen Group</td>
<td>149</td>
</tr>
<tr>
<td>GAs, Neural Networks, and Wasp Swarm Optimization of Logistic Systems and Automation</td>
<td>151</td>
</tr>
</tbody>
</table>

Chapter 13

Prefabricating a More Sustainable Building and Assembling It in 15 Days: Broad Group, China

(Alfredo Andia)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Origins</td>
<td>155</td>
</tr>
<tr>
<td>Sustainability Vision</td>
<td>156</td>
</tr>
<tr>
<td>Broad Sustainable Building</td>
<td>156</td>
</tr>
<tr>
<td>The T30 Hotel Built in 15 Days</td>
<td>157</td>
</tr>
<tr>
<td>BSB Sustainability</td>
<td>158</td>
</tr>
<tr>
<td>Cost and Time</td>
<td>158</td>
</tr>
<tr>
<td>Building Automation System</td>
<td>161</td>
</tr>
<tr>
<td>Business Mode!</td>
<td>161</td>
</tr>
<tr>
<td>Sky City: The Tallest Building in the World Built in 90 Days</td>
<td>161</td>
</tr>
<tr>
<td>Conclusion</td>
<td>161</td>
</tr>
</tbody>
</table>

Chapter 14

Automated Fabrication and Assembly: Sekisui Heim, Tokyo, Japan

(Jun Furuse, Masayuki Katano, and Thomas Spiegelhalter)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>163</td>
</tr>
<tr>
<td>Modular Sekisui Unit House</td>
<td>164</td>
</tr>
</tbody>
</table>
Chapter 15
Customized Prefabrication in Two Hospitals: NBBJ, Ohio
(Alfredo Andia)
Introduction 171
Miami Valley Hospital- Implementing the Idea of Prefabrication 171
Prefabrication Performance Metrics 176
Neuroscience Institute at Riverside Methodist Hospital 176
Colocating of the Entire Design/Build Team in NBBJ Office 177
Just-in-Time Prefab Construction Schedule 177
3-D and 4-DBIM Models 178
Improvements in the Prefabrication of the Components 179
Conclusion 179

Chapter 16
Robotic Fabrication: ICD/ITKE Research Pavilion 2012
(Achim Menges and Jan Knippers)
Introduction 181
Biological Model 182
Transfer of Biomimetic Design Principles 183
Computational Design and Robotic Production 184

Part IV—Emerging Automations

Chapter 17
Automating Design via Machine Learning Algorithms
(Alfredo Andia)
Introduction 191
Limitations of Parametric Systems 191
Algorithms vs. Learning Algorithms 192
Computers as Autopoietic, Self-Organizing, and Self-Learning 192
Systems Parametric: First Stage of Al 193
Machine Learning: Second Stage of Al 193
Examples of Machine Learning Algorithms Outside the AEC industry 194
Learning Algorithms in Architectural Design 194
Automated Design for Residential Building 194
Automating Building Layout Design 195
Machine Learning Hardware: Neuromorphic Processors 197
General Al Third Stage of Al 198
Conclusion 199
Chapter 18
Automating Construction via n-D Digital Manufacturing 201
(Alfredo Andia)
Introduction 201
At the Dawn of Three New Manufacturing Eras 201
3-D Manufacturing: Making Any Form in 3-D 202
3-D Manufacturing: Large-Scale Digital Manufacturing 202
4-D Manufacturing: Printing New Materials 203
4-D Manufacturing: Adaptive Materials 205
4-D Manufacturing: Nanotechnology 205
n-D Manufacturing: Programmable Matter 205
n-D Manufacturing: Self-Made Robots 206
n-D Manufacturing: Synthetic Biology 206
Conclusion 206

Chapter 19
Conclusion: Another Look at Semiautomating the AEC Sector 209
(Alfredo Andia and Thomas Spiegelhalter)
1910s-1930s: Explosive Industrialization 209
1950s: Standardized Industrialization 209
2010s: Explosive Digital Innovation 209
Who Owns Innovation Outside the AEC Industry? 209
Platforms of Digital Innovation 210
AEC Social Units 210
Digitally Disrupting Platforms in the AEC Industry 210
Machine Learning: Automating Design 211
Big Data: Automating Planning and Real Estate Development 211
Digital Manufacturing: Automating Construction 212
Examples of Emerging Digital Manufacturing: Robotics 212
Examples of Emerging Digital Manufacturing: 3-D Printing 212
Routes of Digital Consumption 213
Cautionary Tale 214
Moonshot Thinking 215

About the Editors 217

About the Authors 219

Index 223

oprac. BPK