Preface

CHAPTER 1 Introduction
1.1 Pavement Design Requirements 1
1.2 Representative Pavement Design Methods 2
1.2.1 Empirical-Based Design Methods 2
1.2.2 Mechanistic-Based Design Methods 5
1.2.3 Performance-Based Design Methods 25
1.2.4 Discussion on Pavement Design Method 36
1.3 Pavement Research in China 44
1.4 Pavement Performance and Consideration in Design 47
1.4.1 Pavement Performance and Behavior 47
1.4.2 Pavement Performance Research 49
1.4.3 Consideration of Pavement Performance in Design 56
1.5 Problems in China's Pavement Practice 57

References 58

CHAPTER 2 Distribution of the Temperature Field in a Pavement Structure
2.1 Background 61
2.2 Literature Review 62
2.2.1 Overseas Literature Review 62
2.2.2 Domestic Literature Review 72
2.2.3 Literature Overview 72
2.3 Measurement of Pavement Temperature 73
2.4 The Influence of Environmental Factors on Pavement Temperature 77
2.4.1 Influence Mechanisms 77
2.4.2 Primary Influence Factors 78
2.4.3 Daily Change of Main Environmental Factors and Pavement Temperature 79
2.5 Pavement Temperature Prediction Model 80
2.5.1 Basic Expression of the Prediction Model 80
2.5.2 Regional Differences for Prediction Models 86
2.5.3 Reasons for Regional Differences 87
2.5.4 Treatments of Regional Differences in Temperature Predictions 98
2.5.5 The Pavement Temperature Prediction Model with Regional Correction Factors 99
2.6 The Simplified Pavement Temperature Prediction Model 105
2.6.1 The Basic Form of the Simplified Model 106
2.6.2 Accuracy of the Simplified Prediction Model 107
2.6.3 Application of the Simplified Prediction Model 110
2.7 The Prediction Model of the Critical Temperature of Asphalt Pavement 111
2.7.1 The Prediction Model for the Maximal Daily Temperature of Asphalt Pavement 111
2.7.2 Prediction Model for Minimal Daily Temperature 114
2.8 Improvement of the Pavement Temperature Prediction Model 117
2.8.1 Data Reprocessing 117
2.8.2 Selection of Independent Variables 119
2.8.3 Determination of Form and Parameters for the Prediction Model 129
2.9 The Thermal Conduction Model Considering Noncyclic Temperature Variation 148
2.9.1 Influence Factors 148
2.9.2 Theoretical Model for a One-Dimensional Pavement Temperature Field 152
2.9.3 Influence of Model Parameters 160
2.10 Pavement Temperature Under Continuously Rising Temperature 166
2.10.1 Measured Pavement Rising Process 166
2.10.2 Feature of Pavement Temperature Field Under Continuously High Air Temperature 168
2.10.3 Influence of Air Temperature Pattern 172
References 175

CHAPTER 3 Analysis of Load Stress for Pavement Structure 179
3.1 Introduction 179
3.2 Calculation Parameters 180
3.2.1 Pavement Structure and Calculation Model 180
3.2.2 Simplification of Tire-Pavement Shape and Compression 182
3.3 Mechanical Response of Pavement Under Heavy-Duty Tire Load 196
3.3.1 Structural Analysis Under Tires with Longitudinal Tread Patterns 197
3.3.2 Structural Analysis Under Tires with Transverse Tread Patterns 212
3.4 Pavement Mechanical Responses Under Light-Duty Tires 226
3.4.1 Computational Results and Analysis 228
3.4.2 Influence Analysis of Base Course Modulus 238
3.5 Summary and Redefining Vehicle Overload 238
3.5.1 Summary 238
3.5.2 Redefining Vehicle Overload 241
References 242

CHAPTER 4 General Damage Characteristics for Asphalt Pavement 243
4.1 General Damage Characteristics 243
4.1.1 Cracks 243
4.1.2 Deformation 245
4.1.3 Surface Damage 247
CHAPTER 6 The Structural Behavior Equation for Asphalt Pavements

6.1 Pavement Performance Indicators and Their Calculations
 6.1.1 Selection of Pavement Performance Indicators
 6.1.2 Pavement Condition Index
 6.1.3 RQI of Pavement
 6.1.4 Pavement Deflection

6.2 Data Collection
 6.2.1 Collection and Accumulation of Pavement Data
 6.2.2 Traffic Data Collection and Equivalent Transfer

6.3 Determination of Model Form for Pavement Performance Deterioration
 6.3.1 Represented Pavement Performance Models
 6.3.2 Selection of Model Form for Pavement Performance
 6.3.3 Effects of the Universal Performance Model

6.4 Establishment of PBE
 6.4.1 Methodology for Data Analysis
 6.4.2 Original Data Process
 6.4.3 Classification and Clustering of Data
 6.4.4 PCI Deterioration Model
 6.4.5 Deterioration Model of RQI
 6.4.6 Changing of Deflections on Pavement Surface

6.5 Influence of Environmental Factors
 6.5.1 Environmental Influences and Parameters
 6.5.2 Determination of Regional Coefficient
 6.5.3 Relationship Between Regional Coefficients and Environmental Parameters

6.6 Integrated Equations and Verification

6.7 Influences on Pavement Performance by Different Factors
 6.7.1 Influence of External Factors
 6.7.2 Influence from Internal Factors

6.8 Structural Behavior Graph for Asphalt Pavement
 6.8.1 Meanings of Pavement Behavior Graph
 6.8.2 Plotting of Pavement Structural Behavior Graphs
 6.8.3 Pavement Behavior Graph Examples for Different Pavements
 6.8.4 Application of Pavement Behavior Graphs

References
10.3.2 Laboratory Fatigue Equation of Mixture 666
10.3.3 Bridge Factor- From Laboratory to Real Pavement 667
10.3.4 Comprehensive Fatigue Equation for Pavement Structure 671
10.4 Unified Design System. Performance-Based Design
+ Mechanistic-Based Examination 672
10.4.1 Pavement Distress Mode and Design Indicator 672
10.4.2 Design Flowchart 677
10.4.3 Modulus Component Design of Layers (Phase II) 679
10.4.4 Thickness Design (Phase III) 696
10.4.5 Mechanistic Examination and Material Design (Phase IV) 696
10.4.6 Final Design Results 699
10.5 Modification Coefficient of Calculated Deflection 699
10.5.1 Test Pavements 700
10.5.2 Test Results 703
10.5.3 Improved Modification Coefficient of Deflection 707
10.6 Comparison with Long-Life Pavement Design 708
10.6.1 Concept of Long-Life Pavement 708
10.6.2 Design of Long-Life Pavement 709
10.6.3 Comparison of the Design Results 712
References 713

CHAPTER 11 Shear Strength Measurements for Asphalt Mixture 715
11.1 Introduction 715
11.2 Conceiving of Shear Test Method 716
11.2.1 Design of Test Method 716
11.2.2 Determination of the Parameters for the Uniaxial Penetration Test 720
11.3 Analysis Methods of Test Data 739
11.3.1 First Method 740
11.3.2 Second Method 745
11.4 Test and Verification 751
11.4.1 Test Materials 751
11.4.2 Effect of the Loading Rate 753
11.4.3 Test Results 755
11.4.4 Validation of a Test Method with Different Aggregate Sizes 767
11.4.5 Effect of Indenter and Specimen Diameter on Variation of Penetration Strength 769
11.5 Shear Strength Parameters for Different Specimen Dimensions 771
11.5.1 Finite Element Analysis of Specimen with Different Size 771
11.5.2 Parameter Revision for Nonstandard Test Specimen 776
11.5.3 Summary of Uniaxial Penetration Test Parameters 782
11.6 Factors Affecting Shear Strength of Hot Mix Asphalt 783
11.6.1 Coarse Aggregate Effects on Shear Strength 785
11.6.2 Effects of Fine Aggregate on Shear Strength 788
11.6.3 Influence of Asphalt Binder on Shear Strength 790
11.6.4 Influence of Air Voids on Shear Strength 792
11.6.5 Influence of Temperature on Shear Strength 793
14.1.3 On Fatigue Test 926
14.1.4 Precise Structure Component Design 927
14.1.5 Precision of Pavement Behavior Equation 928
14.2 Load Equivalence 928
14.3 Environment Effects 928
14.3.1 Effects of Underground Water 929
14.3.2 Effects of Dynamic Water Pressure 929
14.3.3 Effects of Air Moisture 930
14.3.4 Effects of Temperature 932
14.3.5 Aging and Property Change of Materials 933
14.3.6 Comprehensive Effect of Load and Environment on Pavement Performance 933
14.4 Pavement Material Research 933
14.4.1 Mechanistic Requirements for Pavement Material 933
14.4.2 Effect of Binder and Aggregate in Mixture 934
14.4.3 Requirements of Pavement Structure and Environment to Material Property 935
14.4.4 High-Performance Material 936
14.4.5 Whole-Life Evaluation of Material Property Based on Work Environment 936
14.5 Accumulation of Pavement Deformation 937
14.6 Effect of Dynamic Load 938
14.7 Design on Demand: New Frontier of Pavement Design 939
References 940

APPENDIX I Development of a Static Device for the Tire-Pavement Contact Pressure Test 941

APPENDIX II Tests of Tire-Pavement Contact Pressure 959

APPENDIX III Analysis of the Test Results of Tire-Pavement Contact Pressure 991

APPENDIX IV Climatic Data for Six Regions and Monthly Average Air Temperature in 1951-80 for the Provincial Capitals 1025

Index 1033

oprac. BPK